Jumat, 28 Oktober 2011

Analogue electronics

Analogue electronics (or analog in American English) are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two different levels. The term "analogue" describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος (analogos) meaning "proportional".[1]

An analogue signal uses some attribute of the medium to convey the signal's information. For example, an aneroid barometer uses the angular position of a needle as the signal to convey the information of changes in atmospheric pressure.[2]Electrical signals may represent information by changing their voltage, current, frequency, or total charge. Information is converted from some other physical form (such as sound, light, temperature, pressure, position) to an electrical signal by a transducer which converts one type of energy into another (e.g. a microphone).[3]

The signals take any value from a given range, and each unique signal value represents different information. Any change in the signal is meaningful, and each level of the signal represents a different level of the phenomenon that it represents. For example, suppose the signal is being used to represent temperature, with one volt representing one degree Celsius. In such a system 10 volts would represent 10 degrees, and 10.1 volts would represent 10.1 degrees.

Another method of conveying an analogue signal is to use modulation. In this, some base carrier signal has one of its properties altered: amplitude modulation (AM) involves altering the amplitude of a sinusoidal voltage waveform by the source information, frequency modulation (FM) changes the frequency. Other techniques, such as phase modulation[4] or changing the phase of the carrier signal, are also used.

In an analogue sound recording, the variation in pressure of a sound striking a microphone creates a corresponding variation in the current passing through it or voltage across it. An increase in the volume of the sound causes the fluctuation of the current or voltage to increase proportionally while keeping the same waveform or shape.

Mechanical, pneumatic, hydraulic and other systems may also use analogue signals.


Inherent noise

Analogue systems invariably include noise; that is, random disturbances or variations, some caused by the random thermal vibrations of atomic particles. Since all variations of an analogue signal are significant, any disturbance is equivalent to a change in the original signal and so appears as noise.[5] As the signal is copied and re-copied, or transmitted over long distances, these random variations become more significant and lead to signal degradation. Other sources of noise may include external electrical signals or poorly designed components. These disturbances are reduced by shielding, and using low-noise amplifiers (LNA).[6]


Analogue vs. digital electronics

Since the information is encoded differently in analogue and digital electronics, the way they process a signal is consequently different. All operations that can be performed on an analogue signal such as amplification, filtering, limiting, and others, can also be duplicated in the digital domain. Every digital circuit is also an analogue circuit, in that the behaviour of any digital circuit can be explained using the rules of analogue circuits.

The first electronic devices invented and mass produced were analogue. The use of microelectronics has reduced the cost of digital techniques and now makes digital methods feasible and cost-effective such as in the field of human-machine communication by voice.[7]

The main differences between analogue and digital electronics are listed below:


Noise

Because of the way information is encoded in analogue circuits, they are much more susceptible to noise than digital circuits, since a small change in the signal can represent a significant change in the information present in the signal and can cause the information present to be lost. Since digital signals take on one of only two different values, a disturbance would have to be about one-half the magnitude of the digital signal to cause an error; this property of digital circuits can be exploited to make signal processing noise-resistant. In digital electronics, because the information is quantized, as long as the signal stays inside a range of values, it represents the same information. Digital circuits use this principle to regenerate the signal at each logic gate, lessening or removing noise.[8]


Precision

A number of factors affect how precise a signal is, mainly the noise present in the original signal and the noise added by processing. See signal-to-noise ratio. Fundamental physical limits such as the shot noise in components limits the resolution of analogue signals. In digital electronics additional precision is obtained by using additional digits to represent the signal; the practical limit in the number of digits is determined by the performance of the analogue-to-digital converter (ADC), since digital operations can usually be performed without loss of precision. The ADC takes an analogue signal and changes into a series of binary numbers. The ADC may be used in simple digital display devices e. g. thermometers, light meters but it may also be used in digital sound recording and in data acquisition. However, a digital-to-analogue converter (DAC) is used to change a digital signal to an analogue signal. A DAC takes a series of binary numbers and converts it to an analogue signal. It is common to find a DAC in the gain-control system of an op-amp which in turn may be used to control digital amplifiers and filters.[9]


Design difficulty

Analogue circuits are harder to design, requiring more skill, than comparable digital systems.[citation needed] This is one of the main reasons why digital systems have become more common than analogue devices. An analogue circuit must be designed by hand, and the process is much less automated than for digital systems. However, if a digital electronic device is to interact with the real world, it will always need an analogue interface.[10] For example, every digital radio receiver has an analogue preamplifier as the first stage in the receive chain.





References

1. ^ Concise Oxford dictionary (10 ed.). Oxford University Press Inc.. 1999. ISBN 0198602871.

2. ^ Plympton, George Washington (1884). The aneroid barometer: its construction and use. D. Van Nostran Co..

3. ^ Singmin, Andrew (2001). Beginning digital electronics through projects. Newnes. p. 9. ISBN 0750672696. "Signals come from transducers..."

4. ^ Miller, Mark R. (2002). Electronics the Easy Way. Barron's Educational Series. pp. 232–239. ISBN 0764119811. "Until the radio came along..."

5. ^ Hsu, Hwei Piao (2003). Schaum's outline of theory and problems of analogue and digital communications. McGraw-Hill Professional. p. 202. ISBN 0071402286. "The presence of noise degrades the performance of communication systems."

6. ^ Carr, Joseph J. (2000). Secrets of RF circuit design. McGraw-Hill Professional. p. 423. ISBN 0071370677. "It is common in microwave systems..."

7. ^ Roe, David B.; Wilpon, Jay G. (1994). Voice communication between humans and machines. U.S. National Academy of Science Press. p. 19. ISBN 0309049887. "...microelectronics technology."

8. ^ Chen, Wai-Kai (2005). The electrical engineering handbook. Academic Press. p. 101. ISBN 0121709600. "Noise from an analog (or small-signal) perspective..."

9. ^ Scherz, Paul (2006). Practical electronics for inventors. McGraw-Hill Professional. p. 730. ISBN 0071452816. "In order for analog devices... to communicate with digital circuits..."

10. ^ Williams, Jim (1991). Analog circuit design. Newnes. p. 238. ISBN 0750696401. "Even within companies producing both analog and digital products..."

Senin, 24 Oktober 2011

Acoustics

Acoustics is the interdisciplinary science that deals with the study of all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics can be seen in almost all aspects of modern society with the most obvious being the audio and noise control industries.

Hearing is one of the most crucial means of survival in the animal world, and speech is one of the most distinctive characteristics of human development and culture. So it is no surprise that the science of acoustics spreads across so many facets of our society—music, medicine, architecture, industrial production, warfare and more. Art, craft, science and technology have provoked one another to advance the whole, as in many other fields of knowledge. Lindsay's 'Wheel of Acoustics' is a well accepted overview of the various fields in acoustics.[1]

The word "acoustic" is derived from the Greek word ἀκουστικός (akoustikos), meaning "of or for hearing, ready to hear"[2] and that from ἀκουστός (akoustos), "heard, audible",[3] which in turn derives from the verb ἀκούω (akouo), "I hear".[4]

The Latin synonym is "sonic", after which the term sonics used to be a synonym for acoustics[5] and later a branch of acoustics.[6] Frequencies above and below the audible range are called "ultrasonic" and "infrasonic", respectively.


Divisions of acoustics

The table below shows seventeen major subfields of acoustics established in the PACS classification system. These have been grouped into three domains: physical acoustics, biological acoustics and acoustical engineering.

Physical acoustics Biological acoustics Acoustical engineering

See also

Jumat, 21 Oktober 2011

Accelerator physics

Accelerator physics deals with the problems of building and operating particle accelerators.

The experiments conducted with particle accelerators are not regarded as part of accelerator physics. These belong (according to the objectives of the experiments) to particle physics, nuclear physics, condensed matter physics, materials physics, etc. as well as to other sciences and technical fields. The types of experiments done at a particular accelerator and/or its other uses are largely constrained by the characteristics of the accelerator itself, such as energy (per particle), types of particles, beam intensity, beam quality, etc.

Accelerator physics itself is the study of the motion of the particle beam through the machine, control and manipulation of the beam, interaction with the machine itself, and measurements of the various parameters associated with particle beams.


See also

External links

Kamis, 20 Oktober 2011

Engineering Physics

Overview


Unlike traditional engineering disciplines, engineering science/physics is not necessarily confined to a particular branch of science or physics. Instead, engineering science/physics is meant to provide a more thorough grounding in applied physics for a selected specialty such as optics, quantum physics, materials science, applied mechanics, nanotechnology, microfabrication, mechanical engineering,electrical engineering, biophysics, control theory, aerodynamics, energy, solid-state physics, etc. It is the discipline devoted to creating and optimizing engineering solutions through enhanced understanding and integrated application of mathematical, scientific, statistical, and engineering principles. The discipline is also meant for cross-functionality and bridges the gap between theoretical science and practical engineering with emphasis in research and development, design, and analysis.

Engineering physics or engineering science degrees are respected academic degrees awarded in many countries. It is notable that in many languages the term for "engineering physics" would be directly translated into English as "technical physics". In some countries, both what would be translated as "engineering physics" and what would be translated as "technical physics" are disciplines leading to academic degrees, with the former specializes in nuclear power research, and the latter closer to engineering physics.[5] In some institutions, engineering (or applied) physics major is a discipline or specialization within the scope of engineering science, or applied science.[6][7]

In many universities, engineering science programs may be offered at the levels of B.Tech, B.Sc., M.Sc. and Ph.D. Usually, a core of basic and advanced courses in mathematics, physics, chemistry, and biology forms the foundation of the curriculum, while typical elective areas may include fluid dynamics, quantum physics, economics, plasma physics, relativity, solid mechanics, operations research, information technology and engineering, dynamical systems, bioengineering, environmental engineering, computational engineering, engineering mathematics and statistics, solid-state devices, materials science, electromagnetism, nanoscience, nanotechnology, energy, and optics.


Wikipedia

Engineering Physics

Engineering physics is the study of the combined disciplines of physics, engineering and mathematics in order to develop an understanding of the interrelationships of these three disciplines. Fundamental physics is combined with problem solving and engineering skills, which then has broad applications. Career paths for Engineering physics is usually (broadly) "engineering, applied science or applied physics through research, teaching or entrepreneurial engineering". Coverage of Engineering physics can be one course, one curriculum, or one book. This interdisciplinary knowledge is designed for the continuous innovation occurring with technology.

Bissmilahirrohmanirrohim

Assalamualaikum